TDA Progress Report 42-70

May and June 1982

A Structure Function Representatioh Theorem With
Applications to Frequency Stability Estimation

C. A. Greenhall

Communications Systems Research Section

Random processes with stationary nth differences serve as models for oscillator phase
noise. The theorem proved here allows one to obtain the structure function (covariances
of the nth differences) of such a process in terms of the differences of a single function of
one time variable. In turn, this function can easily be obtained from the spectral density
of the process. The theorem is used for computing the variance of two estimators of

frequency stability.

l. Introduction

Let the output of a precision oscillator be modelled by cos
{27y [t + x(£)] }, where x(?) is a random process representing
the “phase time” noise. The most widely used time-domain
measure of oscillator stability is the Allan variance, defined by
the ensemble average
200 = 1 2 2
o3(r) = P E[a2xG)] ¢))

provided that the expectation exists and is independent of the
time s. Here, Af is the backward 2nd difference operator,
given by

A2F(r) = £t) - 2= 1)+ (2 - 20).

The theorem given here arose from the desire to compute
the performance of estimators of aj (7). Suppose that x() is
given on an interval 0 <¢ < T. Fix 7 < T/2, and set

1
™2

&) = AZx(z).

A class of unbiased estimators of oj('r) is given by
T
v [ omoa, )
27

where w(t) is a weighting function (or measure) whose total
weight on [27, T] is 1. Two members of this class are treated
in Section IV,

Assume further that £(¢) is a stationary Gaussian process
with zero mean and autocovariance function R(#). Then £2()
is a stationary process with mean oj (7) and autocovariance
function 2R§(t). 1t follows that

EV = E£*(t) = o}(7),

T T
Var ¥V = f f 2R§(s- Dw(s)w(t)dsds . 3)
27 27
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Evidently, to compute Var ¥V, we need to obtain R,(¢)
from the model for x(¢). Let us suppose, temporarily, that x(¢)
is stationary, with autocovariance function

R () = Cov [x(s + 1), x(s)],

not depending on s. A straightforward computation yields
E Afx(s) =0, and

EAXx(s + 1)A2x(s) = 87R_(2), 4)
where 62 = AZA2

2AZ_, the central 4th difference operator, also
given by

82A(t) = flt - 21) - 4f(t - )+ 6£(¢) - 4f(2 + 1) + f(¢ + 27).

The left side of (4) is called the 2nd structure function of x(t)
(Refs. 1, 2). Letting ¢ = 0 in (4), we have

62(r) = T—lz BR,(0)- 4R () +R D], (5

as pointed out by Barnes (Ref. 3). Consequently, since [R,(£)I
<R, (0) = Varx,

8 Var x

T2

>

oj(r) <

3Varx

T

(1) ~——= (19, (6)

provided R, (¢) = 0 (£ > ).

This is for stationary x(¢). On the other hand, for actual
oscillators a behavior like (6) is observed only for small 7,
below 1 s for quartz crystal oscillators and 100 s for hydrogen
masers. As 7 increases, the measured o,(7) decreases to a
minimum, then stays constant or increases. Of course, since
our measurement times are finite, this observation does not
“prove” that x(¢) is nonstationary. A stationary process with a
huge variance and a tiny bandwidth would explain what we
see, for we would be looking only at a small piece of the
process. If 7 were to increase beyond the scale of our observa-
tions, then o,(r) would ultimately behave like (6) again.
However, if we want to describe the behavior of x(¢) on
realistic time intervals, a nonobservable low-frequency cutoff
only gets in the way, and eventually has to be driven to zero.
It is mathematically easier to use a nonstationary model from
the very start.
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For modelling oscillator phase noise, it is usually sufficient
to let x(¢) belong to the class of processes whose 2nd differ-

“ences Afx(t) are stationary. This class includes the stationary

processes and those with stationary 1st differences. Such a
process has a two-sided “formal” spectral density S, (w),
which can have a singularity at w = 0 that is strong enough to

make
1
f S, (w)dw = o,
-1

Nevertheless, we always have

fw1+w

for this class of processes. An example is the powerlaw
spectrum

S_(w)dw < oo (7

where 1 <g<35.

A rigorous theory of these processes exists (Ref. 1); basi-
cally, it shows that one can plunge ahead with the formalism
from stationary processes as long as the integrals converge. For
example, the transfer function of the operator A2 is
(1 - e-iwt)? Therefore,

* 4
EA2x (¢ + )AZx(s) = f w1 - e71T|
(8

dw . 2. 4
Sx(w)77r— ettt

The extra term ¢27* comes from a frequency drift component
ct2/2 in x(¢). Letting ¢ = 0, we obtain the Allan variance (1).
By this method, the theoretical Allan variance has been evalu-
ated and tabulated (Ref. 4) for S, (w) = K/lw|*, k an integer,
0<k<4. (For k<1, a high-frequency cutoff is provided.)
Allowing ¢ to be nonzero appears to make (8) more difficult to
evaluate. Yet, for our estimation problem, we do need the full
covariance function of the process A2x(¢). One longs for the
simplicity of (4), with R, () given by the simple Fourier
integral

R = f Ceors (92 ©)




This integral does not exist, however, unless x(¢) is stationary
(or equal to a quadratic polynomial plus a stationary process).

The theorem to be proved here gives an easily computable
replacement for R (z), valid for all processes with stationary
nth differences. Equation (4) is replaced by

EAZx(s + )A%x(s) = 87 [2Re C(D] +c*1*,  (10)

where the (nonunique) function C(¥) can be computed by two
different methods. Here is the second method: Choose an
integer k such that wkS, (w) is integrable near w = 0. Then let

) = I* f " o 5,52 ()
0

in the upper half-plane Im z > 0. The operator ¥ instructs the
user to integrate k times with respect to z. One may then allow
z to be real.

Formally, all we are doing is differentiating (9) k times and
integrating & times. If one does this correctly, one easily gets
valid results for all the power-law oscillator noise models.
Although Lindsey and Chie (Ref. 2) give a number of formulas
that generalize (5), they have to assume that either the phase
x(?) or the frequency dx/dt is stationary. For flicker FM or
random walk FM noise, these assumptions are false. Lindsey
and Chie do hint at the need for distribution theory in this
situation. Although our method has obvious connections to
the analytic representation of distributions (Ref. 5), we use
only the elementary theory of real and analytic functions to
arrive at the main result.

To illustrate the theorem, let us consider the noise called
random walk frequency modulation, defined by S, (w)=
K/w*. For this noise, 0%(7) is proportional to 7 (as we shall
soon see); this kind of Allan variance behavior has been ob-
served in hydrogen maser frequency standards for 7> 10%s
(Ref. 6). Taking k = 4 in (11), we have

_ Ki
C(Z) = 14 51;

=£(_z:z3lnz
2 6

(Imz>0),

in which In z is to be analytic in Imz > 0. The function
(23 In 2)/6 is just a particular solution to the equation f®(z) =
1/z. Taking Inz = In |z[+{ Argz in the upper half-plane, we
get

0 =0
2ReC() = { (12)
"'El‘s (<0 .

This function is nothing like the autocovariance function of a
stationary process, yet applying the operator 8% to it gives the
result

B+ K9 = = 622 Re C1)

(2-9%-4(1-9% (0<r<1)
@7
0 r=2)

(13}

(where 7 = |t|/7), which is a perfectly good autocovariance func-

-tion. In particular,

@) = 526 = 5L

The result (13) can also be derived by expressing £(¢) as the
output of a filter acting on white noise. The method given here
is easier and applies to more general difference operators.
Moreover, as Section III shows, all of the power-law spectral
models become equally simple. Previously, the odd powers
(the “flicker” models) were more difficult to handle than the
even powers.

Il. The Representation Theorem

A mean-continuous random process x(f) is said to have
stationary n*™* differences if, for each real 7, the process
APx(¢) is stationary (in the wide sense). For such a process,
define the dc coefficient ¢ by

1 (T
= ]i —_ n
¢ = lim Tf ATx(z)dr
Toroo o
(in mean square).

For applications, we shall assume that the ath differences

of x(#) are ergodic, so that ¢ is nonrandom. It can then be
shown that

et = EATX(D). (14)
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The process xy(£) = x(f) - ct*/n! equals a polynomial of
degree <n plus a mean-zero process. Associated with x(¢) is a
(two-sided) nonnegative formal spectral density S, (w), from
which all the covariances of the nth differences of x(z) can be
obtained. If x(¢) is real, then S, (- w) =8, (w).

In connection with these processes, it is convenient to
introduce a general real difference operator L that, when
applied to a function f(¥), gives the result

> af+t) (15)

v

Lf(@) =

(a finite sum), where the g, are real. Its transfer function is the
trigonometric polynomial

L{iw) =

iwt
Eae v,
v
14

For example,

n

A = (M) S v

v=0

a6 = (1- )"

A difference operator L is said to have order n if its transfer
function satisfies

L) = =0 (0<j<n) ,

204k,

4

L) = ) g # 0.
4

Such an operator annihilates all polynomials of degree <n, and
reduces the degree of other polynomials by #, as shown by the
computation

PIERCTILED M W YAy
v j=0

14

L

(16)
> (L@ = 3L @
j=0 j=n

(Recall that ( 'I’”) =0 forj > m.) In particular, Lt" = L{(0). If
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L and M have orders I and m, and A = LM, then A has order
{+m,and

AT 0y LD (0) M) (0)
d+myt ~— 1 m!

(17)

If L is given by (15), then the operator L* (of the same order)
is defined by

L) = Yaf(t-t,).

As we mentioned, an example of order »n is L = A” for
which L((0)= n!7". Another example, for n=2, i the
mixed difference operator A A, which was used for estimat-
ing the relative drift rate of a pair of frequency standards
(Ref. 7).

We are now set up to give the main result.

Theorem. Let x(f) be a real process with stationary nth
differences, nonrandom dc coefficient ¢, and spectral density
S (co) Let L and M be real difference operators of order n,
and let A be the difference operator LM™ of order 2n. Then,
the mixed second moments of the processes Lx(¢) and Mx(f)
can be put into the form

ELx(s+10) Mx(s) = [( 1)” (2 ), +2Re C(t)]

(18

where the (nonunique) function C(2) is analytic in Imz > 0,
continuous in Im z 2 0, and can be obtained by either of the
following recipes:

Recipe 1. Choose an integer &k between 0 and 2# such that

1
f w” S (wydw <ee.,
0

Let C(z) = Cy(2), where

oo k-1
. 1 i dw
c@ = [ [‘f“"z TTron (?ZY}Sx(w) o
0 1+ w j=0 ’

If & = 0, then omit the sum.




Recipe 2. Choose k as in Recipe 1. Define

B() = f 9% (jgo)F Sx(w)% (Imz>0). (20)
0

Let C(z) be any kth integral of B(z) on Im z > 0 (in other
words, any function such that C(¥)(z) = B(2)). Extend C(z) to
the real line by continuity. (This is always possible.)

Remark. The first term in the brackets in (18), when acted
upon by A, becomes

L™(0) M™(0)
n!

] = E [Lx(D)] E Mx(®] . (21)

C,2

Corollary. 1et x(¢) have stationary nth differences. The
structure function

D7) = EA:_’x(s +1) AZx(s)

of the process x(f) can be obtained from a function of one
variable, namely 2 Re C(¥), by

D(t; 1) = 2"+ (-1)" 82"(2 Re C(1)), (22)
where

2 - 2"__ n
577 =(8,) =(4aA),

T -T
the central difference operator of order 2#.

These results show that 2 Re C(¢) contains the same infor-
mation as S, (w) about the process x(r). We can regard 2 Re
C(f) as an analog of the covariance function of a stationary
process.

lll. Examples forn =2

Oscillator phase noise is often modelled by a linear com-
bination of independent power-law noises with spectra

3

o - Flelo),

where F(w/w,,) is an integrable low-pass power response func-
tion whose one-sided noise bandwidth is w,/(27). Examples

are the sharp cutoff (1 for lw| < w,, O elsewhere) and the
exponential cutoff exp(-|wl/w, ). The above noises are called
random walk FM, flicker FM, white FM, flicker PM, and white
PM. (The term “white” will be used even if F' is not exactly
flat near zero frequency.)

The introduction has shown how to apply the representa-
tion theorem to random walk FM; let us proceed to the
calculation of 2 Re C(¢) for the other noises. In order to
express the results in the established notation of the frequency
and timing literature (Ref. 4), we use the form

h

[+

S (W =K |w®?, K = , (23)
x [« o 2(211')0‘

where a high-frequency cutoff F(w/w,) is also applied when
a =1 (PM noises).

First, let o = 0, -1, or -2 (white, flicker, or random walk
FM). Using Recipe 2 of the theorem with & = 2 - &, we have

e+ 1

° K i
= iwz kAW _ “a
B(z) Kaj; e it oy

(Imz>0).

(24)

. Since a kth integral of 1/z is (z*! In 2)/(k - 1)!, we get

K & g

z
——=Inz

“2—” ] (Imz=0), (25

C(z) =

in which the branch of In z must be analytic in the upper
half-plane. We shall let In ¢ be real for £ > 0. Let us examine
the three cases separately.

White FM: a=0,k=2.

)
C(z) = i Z Inz,

K,t Int (>0
C(l’) = % .
Inltl+m (¢<0),

0 (t=0)

N|c>:‘

2Re C(t) = (26)

t (t<0).
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Flicker FM: a=-1,k=3,

K—l
C(2) =? 22 Inz,
k—l
2Re C(¥) = - 2 Inltl. 27

Random walk FM. a=-2,k=4.

23
C(z) = ra Inz,

2

h_, m 0
3 - ' 3 (28)

2Re C(®) =

In a sense, the flicker case is easier than the others because
we don’t have to keep track of the imaginary part of In z.

For handling the PM noises, the exponential cutoff is easier
to use than the sharp cutoff, and may even be more realistic.
Let S, (w) = K _lwl*"2 exp(- |wl/w,), where & =1 or 2. Again
letting &£ = 2 - o, we get

K l-k+1 1
.o
B(z) = TECTY /‘*’h . 29)
Flicker PM: a=1,k=1.
C(z) = -5—7% In(z+ijw,),
hy
2ReC(f) =~ —In (2 +1/w?). (30)

8

For the sharp high-frequency cutoff, 2 Re C(f) turns out to be
a cosine integral.

White PM: a=2,k=0.

Kzi 1

Cz) = B(z) = Tt iw.
h
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h,w,
2Re C(f) = ————— (31)
8m3 (1+ "";21 %)

which is just R_(¢), because now x(?) is stationary.

Fractional noises. It is well known (Ref. 4) that if the
spectrum satisfies a power law S, (w) =K alwl“"2, where -3
< a< 1, then the Allan variance satifies another power law
aj (r) = const + 7, where 4 = ~1 -a. When Allan variance
measurements are made, fractional values of u sometimes
appear over a certain range of 7. Thus, we ought to show how
to use the representation theorem for fractional values of ¢ in
the range -3 < o <1. We shall do this for 0 < a <1, leaving
the other cases as an exercise for the reader. Take k = 1. Then

B(Z) = ﬂ[w eiwz w(!—l dw
27
0

_% T
277 (-Z'Z)a ’

K, T (o)

C(z) = iﬁ(z)d(—iz) = - m (—iZ)l"a,

where the power functions are analytic in the right half-plane
and positive on the positive real axis. Then

h,, T'(a) sin (;— 7101)

@en'™(1-0)

2Re C(H) = - lelt=, (32)

As a = 0, this expression tends to ~%, |¢|/4, which is indeed a
valid representative of 2 Re C'(¢) for & = 0.

IV. The Variance of Two Allan
Variance Estimators

Let us return to the estimation problem mentioned in the
introduction. Recall that phase time x(¢) is given for 0 < ¢
<T. Therefore, £(z) = A2x(t)/(rV/2) is available for 2r <t
<T. Set m= T/r. Two unbiased estimators of the Allan
variance (1) are '

v, = L 2 #0 (33)




(m an integer = 2), called the T-overlap estimator, and

Vy = F(Flzj f2 ) g at (34)

(m real, >2), called the continuous estimator, which, although
it cannot be achieved in practice, represents a limiting case for
a sample time 7, much less than 7. The use of such an
estimator was suggested by Howe, Allan, and Barnes (Ref. 8).

Although the 7-overlap estimator has been used for many
years, it is reasonable to ask whether the continuous estimator
has a smaller variance. In other words, if v, <<, should we
average all the available samples 52(/1- ), or should we use onty
the samples 22(]T)9 Since the data collectlon time T may be
weeks or months, this question is more than academic.

The answer depends both on m and on the spectrum of the
phase noise. Assume that x(f) is a Gaussian process with
stationary 2nd differences and zero dc component c. If we
know S, (w), then we can compute C(z). By the corollary, the
autocovariance function of the mean-zero process £(7) is

R(H) = = 8% 2ReC(). (35)
272 7 '

As we said in the introduction, the autocovariance function of
the stationary process £2(2) is 2R§ (#). The means and variances
of V_and V, are now computed straightforwardly:

EV, =EVy = RJ(0) = o5(r), (36)
) m=2
Var vV, = (m-1-1HR? (D), (37)
(m-1)° j=—§+2 f

2 T, g
Var v, = - (T2 - t|)R£ (»Hde, (38
T, -7,

where T, = (m - 2)r. (Of course, we recognize that R E(t) is an
even functlon )

The computations have been carried out for white FM,
flicker FM, and random walk FM (see Section III), all of which
have been observed in actual oscillators. The flicker FM results

were computed numerically; the others are in closed form,
which, however, we shall not give here. For white FM and
random walk FM, the 7-overlap formulas agree with those of
Lesage and Audoin (Ref.9); for flicker FM, the -overlap
numbers agree with Yoshimura’s (Ref. 10).

The results are presented in terms of “degrees of freedom,”
defined for a positive estimator ¥V by

_2EVY
df = T

Given d.f., one sometimes uses the appropriate chi-squared
distribution for constructing confidence intervals about the
estimate (Ref. 8). Whether or not this is done, the d.f. remains
a useful figure of merit.

In Fig. 1, for the above three noise types, we plot d.f./
(m-1) vs m for ¥V and V. For white FM, ¥V, is always better
than ¥ . For flicker FM, ¥ is better than V_ except for
m < 3. For random walk FM, V__ is better than ¥ for m <18.
Of course, the smaller values of m are more critical, since d.f.
is roughly proportional to m - 1.

It may seem paradoxical for V. to be better than V, since
V, uses all the available data. Both estimators are special cases
of (2), however; if one looks for the optimal (minimal vari-
ance) estimator of the class (2) (for a given noise type), one
will probably find that the optimal weighting function w(?) is
nonconstant and almost everywhere nonzero. In other words,
one should use all the data, but in a nonuniform way.

V. Concluding Summary

Oscillator stability is usually characterized by the behavior
of nth order differences of the phase. The theoretical evalua-
tion, from the phase noise spectrum, of the variances and
covariances of these differences involves messy trigonometric
integrals, such as (9). The messiness is caused by a (2n)th order
difference operator tangled up inside the integral, Our repre-
sentation theorem breaks the integral evaluation into two easy
steps: (1) evaluation of a much simpler integral depending
only on the noise spectrum; (2) application of that same
difference operator to the result of step (1).

In effect, the evaluation of these integrals is uncoupled into
two independent operations. In Section III, we tabulated only
the result of step (1) (the function called 2 Re C(¥)) for all the
usual power-law oscillator noise models, This short “one-
dimensional” table, plus another one-dimensional table of dif-
ference operators, can generate a two-dimensional table of
results as found, for example, in Ref. 4.
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As an application, we examined two Allan variance esti-
mators. Because the representation theorem delivers such
simple closed forms for the required autocovariance functions,
the computations were quickly executed by a simple BASIC

performance of frequency drift estimators. In general, we get
an estimator of frequency drift rate (the dc coefficient c) by
operating upon oscillator phase with a second-order difference
operation L that need not be of form A2 Here, the fuil

-

program. The theorem can also be used for evaluating the generality of the theorem is needed.
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Fig. 1. Degrees of freedom of the 7-overlap and continuous Allan variance estimates for white, flicker, and
random-walk frequency modulation. The numbers on the right give the horizontal asymptotes. The obser-

vation time is mr.
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Appendix

Proof of the Representation Theorem

For convenience, let us first set down an elementary esti-
mate of the Taylor remainder for e?: If Rez <0, % = 1, then

k—lzj |Z|k
er - E"T < (AD
=0 J

This can be obtained from the integral form of the remainder.

In analogy with the usual notation for mixed structure
functions D(¢; 7, 7,) (Ref. 1), denote the left side of (18) by
D(¢; L, M). Without loss of generality, we can assume that the
dc coefficient ¢ is zero. Begin with the spectral representation
of D(¢; L, M) as given by Yaglom:

D(t;L,M) = f eiwa(iw)M(—iw)Sx(w)—‘%’

= f Aeithx(w)%;_-’
= 2Re A1) , (A2)
where
- - iwz dw
A(2) —f Aé Sx(w)-é—; (A3)
)

for z = ¢ + iu (u = 0), and A operates on functions of z The
name of the game is pulling A outside the integral. If you do
this brutally, the integral usually blows up.

Since the spectral density S, (w) always satisfies

ot 2n
f WS (w)de <o
0 1 + wzn

(Ref. 1), the integer k specified in Recipe 1 exists. We can
always take k= 2n; it is often possible and desirable to use a
smaller . If k=0 works, then §,(w) is integrable, A comes
outside the integral in (A3), and we are done. In this case,
C(2) = A(2), and x(¢) is a polynominal plus a stationary process
whose autocovariance function is 2 Re C(#).

Assume k = 1. Since, for all u > 0,

46

f e wH o S (w)dw <o,
0

the function B(z) of Recipe 2 exists and is analytic in
Im z > 0. Let us now look at Cy(z) as given in Recipe 1. It will
soon be shown that

(a) Cy(z) is continuous on Im z=0 and analytic on
Imz>0;

() C§¥)(z) = B(z) for Im z > 0;
(c) ACy(z)=A(z) forImz >0.

Assuming (a) - (c), we see that Cy(2) is a &t integral of B(z)
on Im z > 0; any other k™ integral C(z) differs from Cy(z) by
at most a polynomial of degree <k. Since A annihilates all
polynomials of degree < 2n, properties (a)- (¢) hold with
Cy(2) replaced by C(z), and the theorem follows from (A2).

To prove (a) - (¢) denoted the bracketed expression in (19)
by E(z, w), which splits into the two parts

= iwz = (iwz)j
E1(Z"”)—1+w2n [e ) ]Z; J! :l’
?,n
= jw 2z
E2(z> w) - 1+ w2n e

Accordingly, Cy(z) splits into two integrals C;(z) and C,(z).
Since C,(z) is the Fourler transform of an integrable function,
C,(z) is continuous on Im z 2 0; on Im z > 0 it is analytic and
can be differentiated repeatedly under the integral sign.

Differentiating £ repeatedly and applying (A1), we get the
bound

(A4)

valid for 0 <p <k, Im z 2 0, |z[ < a. The right side of (A4)
times S, (w) is integrable. Therefore, the function C,(z), on
the domain Im z 2 0, can be differentiated & times under the
integral sign. In particular, C,(2) is continuous on this domain.
This proves (a), and shows that Cy(z) can be differentiated &
times under the integral sign on Im z > 0. Doing so gives (b).
Property (c) is true because A annihilates polynomials of
degree k ~ 1. The theorem is proved.




